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Problems

Problem 1. By a fold of a polygon-shaped paper, we mean drawing a
segment on the paper and folding the paper along that. Suppose that a paper
with the following figure is given. We cut the paper along the boundary of
the shaded region to get a polygon-shaped paper.
Start with this shaded polygon and make a rectangle-shaped paper from it
with at most 5 number of folds. Describe your solution by introducing the
folding lines and drawing the shape after each fold on your solution sheet.
(Note that the folding lines do not have to coincide with the grid lines of the
shape.)

(→ p.5)

Problem 2. A parallelogram ABCD is given (AB 6= BC). Points E and
G are chosen on the line CD such that AC is the angle bisector of both
angles ∠EAD and ∠BAG. The line BC intersects AE and AG at F and H,
respectively. Prove that the line FG passes through the midpoint of HE.

(→ p.8)

Problem 3. According to the figure, three equilateral triangles with side

3



4 Elementary Level

lengths a, b, c have one common vertex and do not have any other common
point. The lengths x, y and z are defined as in the figure. Prove that
3(x+ y + z) > 2(a+ b+ c).

c b

a

x

y z

(→ p.9)

Problem 4. Let P be an arbitrary point in the interior of triangle ABC.
Lines BP and CP intersect AC and AB at E and F , respectively. Let K
and L be the midpoints of the segments BF and CE, respectively. Let the
lines through L and K parallel to CF and BE intersect BC at S and T ,
respectively; moreover, denote by M and N the reflection of S and T over
the points L and K, respectively. Prove that as P moves in the interior of
triangle 4ABC, line MN passes through a fixed point.

(→ p.10)

Problem 5. We say two vertices of a simple polygon are visible from each
other if either they are adjacent, or the segment joining them is completely
inside the polygon (except two endpoints that lie on the boundary). Find all
positive integers n such that there exists a simple polygon with n vertices in
which every vertex is visible from exactly 4 other vertices.
(A simple polygon is a polygon without hole that does not intersect itself.)

(→ p.11)



Solutions

Problem 1. By a fold of a polygon-shaped paper, we mean drawing a
segment on the paper and folding the paper along that. Suppose that a paper
with the following figure is given. We cut the paper along the boundary of
the shaded region to get a polygon-shaped paper.
Start with this shaded polygon and make a rectangle-shaped paper from it
with at most 5 number of folds. Describe your solution by introducing the
folding lines and drawing the shape after each fold on your solution sheet.
(Note that the folding lines do not have to coincide with the grid lines of the
shape.)

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. There are different ways of folding to get a rectangle. For instance,
a solution can be given with only 4 number of folds, as following

5



6 Elementary Level

First fold:

Second fold:

Third fold:



Solutions 7

Fourth fold:

�
Comment. One can move the folding lines slightly in 3rd and 4th folds
of the solution (to down and up respectively) to ensure that all the folding
segments will be in the interior.
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Problem 2. A parallelogram ABCD is given (AB 6= BC). Points E and
G are chosen on the line CD such that AC is the angle bisector of both
angles ∠EAD and ∠BAG. The line BC intersects AE and AG at F and H,
respectively. Prove that the line FG passes through the midpoint of HE.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since AD and BC are parallel, we deduce that ∠FCA = ∠DAC =
∠FAC. So, FA = FC. Similarly, GA = GC. So, triangles 4GAF and
4GCF have a common side and two equal sides and are congruent. Result-
ing ∠GAF = ∠GCF which leads to ∠HAF = ∠ECF and ∠AFH = ∠CFE.
Therefore, triangles 4AFH and 4CFE are congruent as well and we get
FE = FH. Similarly, GE = GH. So, both points F and G lie on perpen-
dicular bisector of segment HE. Hence, FG is the perpendicular bisector of
segment HE.

A

B
C

D

E

G

F

H

�
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Problem 3. According to the figure, three equilateral triangles with side
lengths a, b, c have one common vertex and do not have any other common
point. The lengths x, y and z are defined as in the figure. Prove that
3(x+ y + z) > 2(a+ b+ c).

c b

a

x

y z

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Consider the three white triangles in the figure. Rotating each of
these triangles 60◦ degrees, clock-wise, will make a side of it coincide with
another side of another triangle. So, we can rotate one of them and glue it
to the next. Then, by rotating the glued figure another time, a broken path
of total length x+ y + z will be formed whose endpoints have distance equal
to 2a. Therefore, x+ y+ z > 2a. Similarly, one can show that x+ y+ z > 2b
and x + y + z > 2c. Summing up these three inequalities proves the desired
assertion.

c b

a

x

y z

α

β

θ =⇒
a a

z

x

y c b

α
β

θ
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10 Elementary Level

Problem 4. Let P be an arbitrary point in the interior of triangle ABC.
Lines BP and CP intersect AC and AB at E and F , respectively. Let K
and L be the midpoints of the segments BF and CE, respectively. Let the
lines through L and K parallel to CF and BE intersect BC at S and T ,
respectively; moreover, denote by M and N the reflection of S and T over
the points L and K, respectively. Prove that as P moves in the interior of
triangle 4ABC, line MN passes through a fixed point.

Proposed by Ali Zamani
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since in quadrilateral EMCS, diagonals bisect each other, this
quadrilateral is a parallelogram. So, EM ‖ BC. Let X be the intersection
point of EM and CF . Note that ML ‖ CX and L is the midpoint of CE,
resulting that M is the midpoint of EX as well. Since EX ‖ BC, using
parallel lines, one can find that MP passes through the midpoint of BC.
Similarly, NP passes through the midpoint of BC. Hence proved.

A

B CT S

E

FF

K
LPP

NN

MX

�
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Problem 5. We say two vertices of a simple polygon are visible from each
other if either they are adjacent, or the segment joining them is completely
inside the polygon (except two endpoints that lie on the boundary). Find all
positive integers n such that there exists a simple polygon with n vertices in
which every vertex is visible from exactly 4 other vertices.
(A simple polygon is a polygon without hole that does not intersect itself.)

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We will show that the only possible number is n = 5. Let
A1A2 . . . An be such a polygon.

Lemma 1. Let Ai be visible from Ai−1, Aj , Ak, Ai+1 in clockwise order (note
that the first and the last one are the edge-neighbors). Then, Aj is visible
from Ai−1, Ak, and similarly, Ak is visible from Aj and Ai+1.

Proof. Two diagonals AiAj and AiAk divide the polygon into three parts.
Consider a triangulation for each of these parts. For instance, on the perime-
ter of the part containing AiAj and AiAk, either the segment AjAk is an
edge of the triangulation (which implies that Aj is visible from Ak), or Ai is
connected to another vertex which leads to contradiction. So, Aj should be
visible from Ak. The proof of other cases are similar.

Lemma 2. Assume n > 6 and let indices i, j, k be as in Lemma 1. Then,
AjAk is a side of the polygon.

Proof. Assume that AjAk is an internal diagonal. By Lemma 1, Aj can see
Aj−1. But AjAi and AjAk are internal diagonals. So, AjAi−1 is a side. So,
there is only one vertex between Ai, Aj on the perimeter of polygon.

Ai

Ai−1

Ai+1

Aj

Ak

Similarly, there is only one vertex between Aj , Ak and only one vertex between
Ak, Ai on the perimeter of polygon. This contradicts n > 6. Hence, AjAk is
a side and k = j − 1.
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Now, suppose that n > 6, and let i be a vertex of the polygon such that
Ai−1, Ai+1 are visible from each other. We know that such i exists, for in-
stance one can consider a triangulation of the polygon and pick a triangle
sharing two sides with the polygon.

Ai

Ai−1

Ai−2

Ai+1

Ai+2

It follows from Lemma 2 that Ai−1 can see Ai+2, Ai+1 can see Ai−2, and
Ai−2 can see Ai+2. So, we found the four vertices visible from Ai−1, Ai+1. If
Ai can see a vertex, then it is visible by either Ai−1 or Ai+1 (by Lemma 1).
So, Ai should see Ai−2, Ai+2 and this means Ai−2Ai+2 is a side (by Lemma
2). This contradicts with n > 6.
If n = 6, then in Lemma 2, there are vertices Ai, Aj , Ak such that AiAj , AjAk,
and AkAi are internal diagonals. Let them be A2, A4, A6 in the hexagon.

A2

A4

A6

So, A3 is not visible from A6, meaning that one of the angles A2, A4 is larger
that 180◦. But then A3 cannot see either A1 or A5. This contradicts the fact
that A3 is visible from 4 other vertices. So, n = 6 is also not possible and the
only possible n is 5, where a convex pentagon provides an example of desired
polygon. �
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Problems

Problem 1. A trapezoid ABCD is given where AB and CD are parallel.
Let M be the midpoint of the segment AB. Point N is located on the segment

CD such that ∠ADN =
1

2
∠MNC and ∠BCN =

1

2
∠MND. Prove that N

is the midpoint of the segment CD.

(→ p.17)

Problem 2. Let 4ABC be an isosceles triangle (AB = AC) with its cir-
cumcenter O. Point N is the midpoint of the segment BC and point M is
the reflection of the point N with respect to the side AC. Suppose that T is

a point so that ANBT is a rectangle. Prove that ∠OMT =
1

2
∠BAC.

(→ p.18)

Problem 3. In acute-angled triangle 4ABC (AC > AB), point H is the
orthocenter and point M is the midpoint of the segment BC . The median
AM intersects the circumcircle of triangle 4ABC at X. The line CH in-
tersects the perpendicular bisector of BC at E and the circumcircle of the
triangle 4ABC again at F . Point J lies on circle ω, passing through X, E,
and F , such that BCHJ is a trapezoid (CB ‖ HJ). Prove that JB and EM
meet on ω.

(→ p.19)

Problem 4. Triangle 4ABC is given. An arbitrary circle with center J ,
passing through B and C, intersects the sides AC and AB at E and F ,
respectively. Let X be a point such that triangle 4FXB is similar to triangle
4EJC (with the same order) and the points X and C lie on the same side
of the line AB. Similarly, let Y be a point such that triangle 4EY C is
similar to triangle 4FJB (with the same order) and the points Y and B lie
on the same side of the line AC. Prove that the line XY passes through the
orthocenter of the triangle 4ABC.

15



16 Intermediate Level

(→ p.21)

Problem 5. Find all numbers n ≥ 4 such that there exists a convex polyhe-
dron with exactly n faces, whose all faces are right-angled triangles.
(Note that the angle between any pair of adjacent faces in a convex polyhe-
dron is less than 180◦.)

(→ p.23)



Solutions

Problem 1. A trapezoid ABCD is given where AB and CD are parallel.
Let M be the midpoint of the segment AB. Point N is located on the segment

CD such that ∠ADN =
1

2
∠MNC and ∠BCN =

1

2
∠MND. Prove that N

is the midpoint of the segment CD.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. We have

∠BCN + ∠ADN =
1

2
(∠MND + ∠BDN) = 90◦.

Hence, AD and BC intersect in point P such that ∠DPC = 90◦. Since M is
the midpoint of AB,

∠PMA = 2∠PBA = 2∠PCD = ∠MND.

Note that AB and CD are parallel. Therefore M,N and P are collinear.
Hence, N is the midpoint of segment CD.

A BM

N

P

CD

�

17



18 Intermediate Level

Problem 2. Let 4ABC be an isosceles triangle (AB = AC) with its cir-
cumcenter O. Point N is the midpoint of the segment BC and point M is
the reflection of the point N with respect to the side AC. Suppose that T is

a point so that ANBT is a rectangle. Prove that ∠OMT =
1

2
∠BAC.

Proposed by Ali Zamani
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Since 4ABC is an isosceles triangle, we have ∠ANC = 90◦.
Therefore,

∠OCM = ∠OCA+ ∠MCA = ∠OAC + ∠NCA = 90◦ = ∠TAO.

Also, we have CM = CN = BN = AT and OC = OA. So, triangles 4OCM
and 4OAT are congruent, which leads to OT = OM and

∠AOT = ∠MOC =⇒ ∠TOM = ∠AOC.

Thus, 4AOC ∼ 4MOT and ∠OMT = ∠OAC = 1
2∠A.

B C

A

N

M

T

O

�
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Problem 3. In acute-angled triangle 4ABC (AC > AB), point H is the
orthocenter and point M is the midpoint of the segment BC . The median
AM intersects the circumcircle of triangle 4ABC at X. The line CH in-
tersects the perpendicular bisector of BC at E and the circumcircle of the
triangle 4ABC again at F . Point J lies on circle ω, passing through X, E,
and F , such that BCHJ is a trapezoid (CB ‖ HJ). Prove that JB and EM
meet on ω.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let D be the foot of altitude passing through A and P,K be the
intersection of lines EM,AC and JH,AM , respectively.

A

B CM

HH

X

F

E

J

P

K

D

Q

From parallel lines, we have

ME

EP
=
DH

HA
=
MK

KA
=⇒ EK ‖ AC. (1)

Note that ∠XKE = ∠XAC = ∠XFE. So, K lies on ω. Let Q be the second
intersection point of line EM and circle ω. We have

∠KJQ = ∠KEP
(1)
= ∠EPC = ∠QPC.
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Note that it suffices to prove that ∠KJQ = ∠CBQ or prove that CPBQ is
a cyclic quadrilateral. Which is equivalent to MP ·MQ = MB ·MC. Also,
noting the parallel lines we can write MA = MK·MP

ME . Using this equation
and power of the point M with respect to the circumcircle of triangle 4ABC,
we have

MB ·MC = MA ·MX =
MK ·MX

ME
·MP = MQ ·MP.

Where the last equation comes from power of the point M with respect to
circle ω. Hence proved. �

Comment. The same proof can be used to obtain the following generalised
result:
In triangle 4ABC point P is an arbitrary point and point D lies on the line
BC. The line AD intersects the circumcircle of triangle 4ABC at X. The
line CP intersects the line parallel to AP through D at E and the circumcircle
of triangle 4ABC again at F . Suppose that P lies inside of circle ω, passing
through X, E, and F . Point J lies on ω such that BCPJ is a trapezoid
(CB ‖ PJ). Then JB and ED meet on ω.
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Problem 4. Triangle 4ABC is given. An arbitrary circle with center J ,
passing through B and C, intersects the sides AC and AB at E and F ,
respectively. Let X be a point such that triangle 4FXB is similar to triangle
4EJC (with the same order) and the points X and C lie on the same side
of the line AB. Similarly, let Y be a point such that triangle 4EY C is
similar to triangle 4FJB (with the same order) and the points Y and B lie
on the same side of the line AC. Prove that the line XY passes through the
orthocenter of the triangle 4ABC.

Proposed by Nguyen Van Linh - Vietnam
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let H be the orthocenter of triangle 4ABC, P be the intersection
of BE and CF . PH cuts the perpendicular bisector of BC at Z.

A

B C

HH

J

E

F

X

Y

PP

Z

C ′C ′

B′B′

We have

∠HBP = ∠ABH−∠ABP = 90◦−∠BAC−∠ABP = 90◦−∠BEC = ∠JBC.

Then BH and BJ are isogonal lines with respect to angle ∠PBC. Similarly,
CH and CJ are isogonal lines with respect to angle ∠PCB. From this, we
deduce that H and J are isogonal conjugate with respect to triangle 4BPC.
Then ∠HPB = ∠JPC. But ZB = ZC, JF = JE and 4PFE ∼ 4PBC.
Therefore, 4PFE ∪ {J} ∼ 4PBC ∪ {Z}. Which follows that 4JEF ∼
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4ZCB.
Let B′, C ′ be the intersections of BH and AC, CH and AB, repectively. We
have

PH(BE) = HB ·HB′ = HC ·HC ′ = PH(CF ),

PP(BE) = PB · PE = PC · PF = PP(CF ).

We get Z lies on HP , which is the radical axis of circles with diameters BE
and CF . Analogously, X,Y also lie on HP . Therefore, XY passes through
the orthocenter of triangle 4ABC. �
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Problem 5. Find all numbers n ≥ 4 such that there exists a convex polyhe-
dron with exactly n faces, whose all faces are right-angled triangles.
(Note that the angle between any pair of adjacent faces in a convex polyhe-
dron is less than 180◦.)

Proposed by Hesam Rajabzadeh
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. If such a polyhedron exists for some n, the total number of sides
of faces is from one hand equal to 3n. On the other hand, it is twice the
number of edges. So, 3n is divisible by 2 and n must be even. We will give
an example of such a polyhedron for any even number n ≥ 4.

To this purpose, we need the following lemma.

Lemma 1. Let O be the origin in the 3-dimensional space and suppose
X,Y are two distinct points (different from O) in the xy-plane such that
∠OXY = 90◦. Then, for any point O′ on the z-axis, the triangle 4O′XY is
right-angled (with ∠O′XY = 90◦).

Proof. The proof is based on the Pythagorean Theorem. If O′ = O, there is
nothing to prove. If O′ 6= O, the line OO′ (the z-axis) is perpendicular to the
xy-plane and so is perpendicular to every line in this plane passing through O.
In particular, two triangles,4O′OX and4O′OY are right-angled. According
to the Pythagorean Theorem in these two triangles together, and in triangle
4OXY , we have

O′Y 2 = O′O2 +OY 2 = O′O2 +OX2 +XY 2 = O′X2 +XY 2.

which implies ∠O′XY = 90◦.
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Now, we return to the main problem. If n = 4, then the tetrahedron with
vertices O′, O,X, Y as in the lemma works (above figure). So, we may assume
n ≥ 6. Take m = n−2

2 ≥ 2. First, we construct a convex (m + 2)-gon
OA0A1 · · ·Am in the xy-plane (take O to be the origin) satisfying

• OA0 = OAm.

• All the triangles of the form 4OAiAi+1 (for 0 ≤ i ≤ m− 1) are right-
angled.

Consider m different rays with initial point O (denote them by l1, . . . , lm,
respectively in the clockwise order) such that for a sufficiently small value of
α,

∠l1Ol2 = ∠l2Ol3 = · · · = ∠lm−1Olm = α. (1)

Take an arbitrary point on the ray l1 and call it A1. Start from A1 and induc-
tively by drawing perpendiculars fromAi to li+1 define the pointsA2, A3, . . . , Am
so that

∠OA2A1 = ∠OA3A2 = · · · = OAmAm−1 = 90◦. (2)

By (1) and (2), all the triangles 4OA1A2,4OA2A3, . . . ,4OAm−1OAm are
similar. Therefore, OAm

OAm−1
= · · · = OA3

OA2
= OA2

OA1
. We denote this common

value by r < 1. Note that r can be arbitrarily chosen close to 1 (by taking α
small). Now, we have

OAm =
OAm
OAm−1

· · · · · OA3

OA2
· OA2

OA1
·OA1 = rmOA1.

Note that since α is small, all the points A2, A3, . . . , Am are on the same side
of the line OA1. Take the point A0 on the other side of this line such that
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∠OA0A1 = 90◦ and OA0 = rm.OA1 (A0 is one of the intersection points
of the circle with diameter OA1 and the circle with center O and radius
rm.OA1). If r is sufficiently close to 1 (equivalently α sufficiently close to
zero), rm will be close to 1 and we can ensure that ∠A0OA1 is small. Hence,
the polygon satisfies all the desired properties.
After construction of the polygon, consider two points O′, O′′ on the z-axis (on
different sides of the xy-plane) with OO′ = OO′′ = OA0 = OAm. Then, the
polyhedron with vertices O′, O′′, A0, A1, . . . , Am (convex hull of these points)
have exactly n = 2m + 2 faces, and all are right-angled triangles. Indeed, it
has 2m faces of the form 4O′AiAi+1 and 4O′′AiAi+1 which are all right-
angled according to the lemma, and two faces 4O′A0O

′′, 4O′AmO′′ that are
isosceles right triangles.

�
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Problems

Problem 1. Let M , N , and P be the midpoints of sides BC, AC, and AB
of triangle 4ABC, respectively. E and F are two points on the segment BC

so that ∠NEC =
1

2
∠AMB and ∠PFB =

1

2
∠AMC. Prove that AE = AF .

(→ p.31)

Problem 2. Let 4ABC be an acute-angled triangle with its incenter I.
Suppose that N is the midpoint of the arc BAC of the circumcircle of triangle
4ABC, and P is a point such that ABPC is a parallelogram. Let Q be the
reflection of A over N , and R the projection of A on QI. Show that the line
AI is tangent to the circumcircle of triangle 4PQR.

(→ p.33)

Problem 3. Assume three circles mutually outside each other with the
property that every line separating two of them have intersection with the
interior of the third one. Prove that the sum of pairwise distances between
their centers is at most 2

√
2 times the sum of their radii.

(A line separates two circles, whenever the circles do not have intersection
with the line and are on different sides of it.)

Note. Weaker results with 2
√

2 replaced by some other c may be awarded
points depending on the value of c > 2

√
2.

(→ p.35)

Problem 4. Convex circumscribed quadrilateral ABCD with incenter I
is given such that its incircle is tangent to AD, DC, CB, and BA at K,
L, M , and N . Lines AD and BC meet at E and lines AB and CD meet
at F . Let KM intersects AB and CD at X and Y , respectively. Let LN
intersects AD and BC at Z and T , respectively. Prove that the circumcircle
of triangle 4XFY and the circle with diameter EI are tangent if and only

29
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if the circumcircle of triangle 4TEZ and the circle with diameter FI are
tangent.

(→ p.37)

Problem 5. Consider an acute-angled triangle 4ABC (AC > AB) with
its orthocenter H and circumcircle Γ. Points M and P are the midpoints of
the segments BC and AH, respectively. The line AM meets Γ again at X
and point N lies on the line BC so that NX is tangent to Γ. Points J and
K lie on the circle with diameter MP such that ∠AJP = ∠HNM (B and
J lie on the same side of AH) and circle ω1, passing through K, H, and J ,
and circle ω2, passing through K, M , and N , are externally tangent to each
other. Prove that the common external tangents of ω1 and ω2 meet on the
line NH.

(→ p.46)



Solutions

Problem 1. Let M , N , and P be the midpoints of sides BC, AC, and AB
of triangle 4ABC, respectively. E and F are two points on the segment BC

so that ∠NEC =
1

2
∠AMB and ∠PFB =

1

2
∠AMC. Prove that AE = AF .

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let H be the foot of the altitude passing through A, Q be the
midpoint of NP and K be the intersection point of NE and PF .

A

B CM

NP

E H F

Q

KK

If we prove that points K,H and Q are collinear, using parallel lines ,we get
thatH is the midpoint of EF which is equivalent to the problem. Clearly, AM
passes through Q and H is the reflection of A with respect to NP . Therefore,
∠PQH = ∠AQP = ∠AMB. So, it suffices to show that ∠PQK = ∠AMB.
Note that

∠NEC + ∠PFB =
1

2
(∠AMB + ∠AMC) = 90◦ =⇒ ∠EKF = 90◦.

31
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So, KQ is a median on the hypotenuse in triangle 4PKN and we’ll get

∠PQK = 2∠PNK = 2∠NEC = ∠AMB.

This completes the proof. �
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Problem 2. Let 4ABC be an acute-angled triangle with its incenter I.
Suppose that N is the midpoint of the arc BAC of the circumcircle of triangle
4ABC, and P is a point such that ABPC is a parallelogram. Let Q be the
reflection of A over N , and R the projection of A on QI. Show that the line
AI is tangent to the circumcircle of triangle 4PQR.

Proposed by Patrik Bak - Slovakia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. Let M,S be the midpoint of segments BC,AI, respectively. By
a homothety with center A and ratio 1

2 , P goes to M , Q to N and R to
T ; Where T is the projection of A on SN . So, it suffices to show that the
circumcircle of triangle 4MNT is tangent to AI.

A

B CMM

I

N

S

TT

D

We claim that this circle is tangent to AI at point I. We know that ∠NAS =
90◦. So, by the similarity of two triangles 4ASN , 4TSA, we’ll get

ST · SN = SA2 = SI2.

Therefore, SI is tangent to the circumcircle of triangle 4ITN . Now if we
show that SI is tangent to the circumcircle of triangle 4NIM as well, our
proof is completed; Because the circle passing through I and N and tangent
to SI is unique. Let D be the second intersection point of AI and circumcircle
of triangle 4ABC. Note that ∠DBM = ∠DCB = ∠DNB. Therefore,

DM ·DN = DB2 = DI2.
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Thus, DI is tangent to the circumcircle of triangle 4NIM and we’re done.
�
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Problem 3. Assume three circles mutually outside each other with the
property that every line separating two of them have intersection with the
interior of the third one. Prove that the sum of pairwise distances between
their centers is at most 2

√
2 times the sum of their radii.

(A line separates two circles, whenever the circles do not have intersection
with the line and are on different sides of it.)

Note. Weaker results with 2
√

2 replaced by some other c may be awarded
points depending on the value of c > 2

√
2.

Proposed by Morteza Saghafian
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution. According to the figure, we denote the radii of the circles by
r1, r2, r3 and the distance OiOj by dij . Moreover, let l, l′ be two interior
common tangents of circles ω1 and ω2. We denote the tangency points of l
and l′ as in the figure. Obviously d12 = r1+r2

sinα (α is defined in the figure).
Without loss of generality we assume that r1 ≤ r2.

l

l′

A

B

A′

B′

r1

r2

α

By assumption we can deduce that both lines l and l′ must intersect the third
circle (ω3). If the intersection point of l and ω3 lies outside between A and
B, we can find a line separating ω1 and ω2 so which does not intersect ω3 and
this is a contradiction with the assumptions. We have similar arguments for
l′. So, we can assume that the intersection of ω3 with l and l′ is below B and
A′ respectively. Therefore, r3 is at least the radius of the circle tangent to l
at B and also is tangent to l′ (why?). The radius of this circle is r2 cot2 α.
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Hence,

r3 ≥ r2 cot2 α = r2

(
1− sin2 α

sin2 α

)
≥ r1 + r2

2

(
d212

(r1 + r2)2
− 1

)
.

Consequently,
d212 ≤ (r1 + r2)2 + 2r3(r1 + r2), (∗)

We have similar equations for d13 and d23. Summing these three together
with Cauchy-Schwarz Inequality gives the assertion. Indeed,(∑

dij

)2
≤ 3

∑
d2ij ≤ 6

∑
r2i + 18

∑
rirj ≤ 8

(∑
ri

)2
.

Here, the first and third inequality are coming from Cauchy-Schwarz Inequal-
ity and the second inequality is the consequence of summing (∗) and two other
similar inequalities.

Remark. The upper bound (r1+r2+r3)2 for the right-hand side of (∗) gives
d12 ≤ r1 + r2 + r3. Summing these, gives a weaker result with 3 replaced by
2
√

2. �
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Problem 4. Convex circumscribed quadrilateral ABCD with incenter I
is given such that its incircle is tangent to AD, DC, CB, and BA at K,
L, M , and N . Lines AD and BC meet at E and lines AB and CD meet
at F . Let KM intersects AB and CD at X and Y , respectively. Let LN
intersects AD and BC at Z and T , respectively. Prove that the circumcircle
of triangle 4XFY and the circle with diameter EI are tangent if and only
if the circumcircle of triangle 4TEZ and the circle with diameter FI are
tangent.

Proposed by Mahdi Etesamifard
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solution 1. First, let us prove these lemmas:

Lemma 1. Lines AC, BD, KM and LN are concurrent.

Proof. Using Brianchon’s Theorem in quadrilateral ABCD, one can simply
conclude the fact that AC, BD, KM and LN are concurrent.

Lemma 2. Let P be the intersection point of quadrilateral ABCD’s diagonals
and we have IP ⊥ EF .

Proof. We know that polar of point P is in fact line EF . Therefore, we’ll get
IP⊥EF .

Lemma 3. A circle with diameter EI and the circumcircle of triangle4XY J
are tangent.

A N B

C

E

FF

II
Y

X

KK

M

JJ

DD
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Proof. For the proof of tangency of circumcircle of triangle 4XY J to the
circle with diameter EI (circle ω2), it suffices that the equation of Casey’s
Theorem hold for points X,Y, J and circle ω2.

±XY · P Jω2
±XJ · PYω2

± Y J · PXω2
= 0.

Since P Jω2
= 0, Therefore,

XJ
√
Y K · YM = Y J

√
XK ·XM (1)

Since X,Y lie on the radical axis of two circles ω and ω2, We have:

Y K · YM = Y L2

XK ·XM = XN2

}
(1)

=⇒ XJ · Y L = Y J ·XN (2)

So, we have to prove equation (2). Using Menelaus’s Theorem for triangle
4XFY and line LNP , We have:

XN

FN
· FL
Y L
· Y P
XP

FN=FL
=⇒ XN

Y L
=
XP

Y P
.

From equation (2), we get:

XJ

Y J
=
XN

Y L
=
XP

Y P
.

Therefore, we need to prove that JP is the exterior angle bisector of angle
∠XJY . Since JQ⊥JP , we need to prove that (X,Y ;Q,P ) = −1.

(X,Y ;P,Q) = F (X,Y ;P,Q)
NL
= (N,L;P,U) = −1.

And since point U lies on EF (polar of P ), the last equation holds and we
are done.

Lemma 4. AK is tangent to the circumcircle of triangle 4ABC if and only
if

BK

KC
=

(
AB

AC

)2

.

Proof. Using The Law of Sines and Ratio Lemma, one can simply get the
desired results.

Lemma 5. If angle bisectors of angles ∠E and ∠F are perpendicular, then
ABCD is a cyclic quadrilateral.



Solutions 39

Proof. It’s trivial.

A B

C

D

E

F

II

Y

X

J

KK

L

M

N

S

Now, Let’s get back to the problem. First, we assume that two circles ω1 and
ω2 are tangent to each other. Let S be the foot of the perpendicular line to
FI passing through E. Using Casey’s Theorem for points X,F, Y and circle
ω2, we have:

±XF
√
PYω2
± Y F

√
PXω2
±XY

√
PFω2

= 0

=⇒±XF
√
Y K · YM ± Y F

√
XK ·XM ±XY

√
FS · FI = 0. (3)

Points X and Y lie on the radical axis of circles ω and ω2. Therefore, we
have:

Y K · YM = Y L2 , XK ·XM = XN2.

So, equation (1) can be written as:

±XF · Y L± Y F.XN ±XY
√
FS · FI = 0. (4)

According to the figure, We have: ∠F1 = ∠F2 = α+β
2 .

Y L = FL± FY = FI · cos (F1)± FY = FI · cos

(
α+ β

2

)
± FY,

XN = FN ∓XF = FI · cos (F2)∓XF = FI · cos

(
α+ β

2

)
∓XF.
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A B

C

D

E

FX

Y

K

L
M

N

I
S

QQVV

RR

αα

ββ

Now, by putting them in equation (4), We’ll get:

±XF ·
(
FI · cos

(
α+ β

2

)
± FY

)
± Y F ·

(
FI · cos

(
α+ β

2

)
∓XF

)
±XY

√
FS · FI = 0

=⇒± FI
(
XF + Y F

)
cos

(
α+ β

2

)
= ±XY

√
FS · FI

=⇒FI
(
XF + Y F

XY

)
cos

(
α+ β

2

)
=
√
FS · FI

=⇒ cos

(
α+ β

2

)
·
(

sinα+ sinβ

sin (α+ β)

)
=

√
FS

FI

=⇒ cos2
(
α− β

2

)
=
FS

FI
. (5)

Also, we have:

∠FRS = 90◦ −
(
α+ β

2

)
⇒ ∠QV R = 90◦ −

(
α− β

2

)
⇒ ∠EIF = 90◦ −

(
α− β

2

)
.

So, by equation (5), we have:

sin2 (EIF ) =
FS

FI
. (6)

On the other hand,
FS

FI
=

cos(IFE). sin(EIF )

sin(IEF )
,
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and so in combination with (6),

cos(IFE)

sin(IEF )
= sin(EIF )⇒ cos(EIF ). cos(IEF ) = 0.

So, either ∠EIF = 90◦, or ∠IEF = 90◦. Therefore, we face the following
cases for the point S.

Case 1) ∠EIF = 90◦. This implies that S and I coincide.

sin2 (EIF ) =
FS

FI
= 1.

Now, by Lemma 5, ABCD is a cyclic quadrilateral. On the other hand,
ABCD is circumscribed and every equation resulted from Casey’s Theorem
for the circumcircle of triangle 4XFY and the circle with diameter EI, can
be written for the circumcircle of triangle4TEZ and the circle with diameter
FI as well. So, by Casey’s Theorem, these two circles are tangent to each
other.

Case 2) ∠IEF = 90◦. Consequently, ∠EIF < 90◦ and so

sin2 (EIF ) =

(
ES

EI

)2

=
FS

FI
.

Now by Lemma 4, we get that EF is tangent to the circumcircle of triangle
4ESI and

∠FES = ∠FIF =⇒ ∠IEF = 90◦.

A B

CC

D

II

FF X

YT

Z

J ≡ EJ ≡ E
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Now since ∠IEF = 90◦, the foot of perpendicular line to EF passing through
I, (Point J) coincides with point E. By Lemma 3, the circumcircle of triangle
4TJZ (which is also the circumcircle of triangle 4TEZ), will be tangent to
the circle with diameter FI. In this case, tangency point of the circumcircle of
triangle4TEZ and the circle with diameter EI, will be point I and tangency
point of the circumcircle of triangle 4TEZ and the circle with diameter FI,
will be point E. �

Solution 2 (Proposed Solution from Hong Kong). Denote the incircle
of ABCD by Γ. Let EN and EL meet Γ again at N1 and L1 respectively.
Since KM is the polar of E with respect to Γ, it passes through the pole of
ENN1, which is the intersection of the tangents at N and N1 to Γ. Therefore,
XN1 is a tangent to Γ. Similarly, Y L1 is a tangent to Γ.

A

B

C

D

K

I

N

E

Z

X

F

MM
YY

T
LL

Consider the inversion with respect to Γ. The points F , X and Y are mapped
to the midpoints F ′, X ′ and Y ′ of NL, NN1 and LL1 respectively. The circle
with diameter EI passes through K and M , hence its image is the line KM .
Therefore, circumcircles of triangles 4FXY and 4IMK are tangent if and
only if

1. KM is tangent to the circumcircle of 4F ′X ′Y ′, or

2. KM is parallel to the straight line X ′F ′Y ′.
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We claim that this holds if and only if

(i) KM⊥LN , or

(ii) KM bisects LN , or

(iii) LN bisects KM .

If this is proved, then by symmetry the other tangent condition is also equiv-
alent to (i), (ii) or (iii), and we are done.

We first handle case (2). By the midpoint theorem, we have X ′F ′ ‖ N1L and
F ′Y ′ ‖ NL1. Therefore, X ′, F ′, Y ′ are collinear if and only if N1L ‖ NL1.

• If (2) holds, then KM ‖ N1L ‖ NL1. This shows N1KML and
L1MKN are isosceles trapezoid. As NN1 is the symmedian of4NMK
from N , NL is the median, and thus (iii) holds.

• If (iii) holds, then NL is the median of 4NMK from N , and hence
KM ‖ N1L. Similarly, KM ‖ NL1. Thus, X ′, F ′, Y ′ are collinear and
(2) holds.

I

K

E

N

Q

LL

MM

S

V

PP

L1

N1N1

X ′

F ′F ′

Y ′Y ′
W

Next, we handle case (1), and we may assume X ′, F ′, Y ′ are not collinear.
Denote the intersection points of KM with NL, NL1, NN1 and LL1 by P ,
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Q, V and W respectively.

Claim 1. The point P lies on N1L1, while the point Q lies on N1L.

Proof. These are well-known results since KM (i.e. PQ) is the polar of E
with respect to Γ.

Claim 2. We have ∠F ′X ′P = ∠PY ′F ′ and ∠F ′X ′Q = ∠QY ′F ′.

Proof. Since X ′ and Y ′ are the midpoints of the oppositely similar triangles
4PNN1 and 4PL1L, we have ∠X ′PN = ∠L1PY

′. Using N1L ‖ X ′F ′ and
NL1 ‖ F ′Y ′, we have

∠F ′X ′P = ∠X ′F ′N − ∠X ′PF ′ = ∠N1LN − ∠L1PY
′ = ∠N1L1N − ∠L1PY

′

= ∠(PL1, F
′Y ′)− ∠(PL1, PY

′) = ∠PY ′F ′

For the other assertion, note that ∠F ′X ′Q = ∠N1QX
′ and ∠QY ′F ′ =

∠Y ′QN . The angles ∠N1QX
′ and ∠Y ′QN are equal since QN1X

′N and
QL1Y

′L are oppositely similar.

Claim 3. The only circles passing through X ′, Y ′ and tangent to KM are
the circumcircles of triangles 4PX ′Y ′ and 4QX ′Y ′.

Proof. We first show that KM is tangent to circumcircle of 4PX ′Y ′ at P .
By the Newton-Gauss line of NL1LN1, the midpoint S of PQ lies on X ′Y ′.

By the projection (E,W ;L,L1)
N1→ (V,W ;Q,P ), we know that (V,W ;Q,P )

is a harmonic division. Therefore, we have SP 2 = SV · SW .
Since (E,W ;L,L1) is a harmonic division, we have EW · EY ′ = EL · EL1.
Similarly, we have EV · EX ′ = EN1 · EN . Thus, EW · EY ′ = EL · EL1 =
EN1 · EN = EV · EX ′. This implies V , X ′, Y ′, W are concyclic. Thus,
SV · SW = SX ′ · SY ′. Combining these, we obtain SP 2 = SX ′ · SY ′, which
shows KM is tangent to the circumcircle of 4PX ′Y ′.
Next, from SQ2 = SP 2 = SX ′ · SY ′, KM is also tangent to the circumcircle
of 4QX ′Y ′. On the other hand, for any circle passing through X ′, Y ′ and
tangent to KM , the tangential point must be P or Q since the power of S
with respect to this circle is SX ′ · SY ′. This proves the claim.

We can now work on the main proof of the equivalence of (1) and (i), (ii).
Suppose (1) holds. There are a few subcases to consider.
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• If F ′ lies on KM , then it is exactly case (ii). Now we can assume
F ′ 6= P,Q. By Claim 3, F ′ must lie on the circumcircle of 4PX ′Y ′ or
QX ′Y ′.

• If F ′ lies on the circumcircle of PX ′Y ′, then by Claim 2 we have
∠F ′X ′P = ∠PY ′F ′ = 90◦. As KM is tangent to circumcircle of
PX ′FY ′, this yields KM⊥PF ′, which is case (i).

• We now show that F ′ cannot lie on circumcircle of 4QX ′Y ′. Suppose
on the contrary that F ′ lies on circumcircle of 4QX ′Y ′. By Claim
2 we have ∠F ′X ′Q = ∠QY ′F ′ = 90◦. This yields KM⊥QF ′. Note
that Q must lie outside Γ. WLOG assume Q lies beyond M . Then,
∠F ′MK > 90◦. This implies one of ∠NMK and ∠LMK is greater
than 90◦. This is impossible since Γ is the incircle or the E-excircle of
4ABE and 4CDE.

Next, if (ii) holds. This is the same as F ′ = P , and (1) holds by Claim 3.
Otherwise, if (i) holds and F ′ 6= P . Then, F ′ is the point lying on the line
joining P and the circumcentre of 4PX ′Y ′ such that ∠F ′X ′P = ∠PY ′F ′.
Note that PX ′ 6= PY ′, or otherwise we have PN1 = PL, which gives N1 = L
and NN1 is a diameter of Γ (as 4PN1N ∼= 4PLL1 and KM⊥LN), and F
does not exist. Now, the reflection Y ′′ of Y ′ in PF ′ is distinct from X ′, and
∠F ′X ′P = F ′Y ′′P . So, F ′ lies on circumcircle of 4PX ′Y ′′ (which is also
the circumcircle of 4PX ′Y ′), and (1) still holds by Claim 3.
Combining all these, we have proven the equivalence. �

Comment. The first part of the proof of Claim 3 is similar to Problem G4
of IMO Shortlist 2009.
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Problem 5. Consider an acute-angled triangle 4ABC (AC > AB) with
its orthocenter H and circumcircle Γ. Points M and P are the midpoints of
the segments BC and AH, respectively. The line AM meets Γ again at X
and point N lies on the line BC so that NX is tangent to Γ. Points J and
K lie on the circle with diameter MP such that ∠AJP = ∠HNM (B and
J lie on the same side of AH) and circle ω1, passing through K, H, and J ,
and circle ω2, passing through K, M , and N , are externally tangent to each
other. Prove that the common external tangents of ω1 and ω2 meet on the
line NH.

Proposed by Alireza Dadgarnia
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Solution 1. Let D be the intersection of AH and BC. Denote Ω by the
circle with diameter PM . It’s obvious that D lies on Ω. Also since 4ABC is
acute, H lies on the segment PD and so inside of Ω. N lies on the extension
of DM and so outside of Ω. We claim that there are at most two possible
cases for K. The following lemma proves our claim.

Lemma. Given a circle ω and four points A, B, C, and D, such that A and
B lie on the circle, C inside and D outside of the circle. There are exactly two
points like K on ω so that the circumcircles of triangles 4ACK and 4BDK
are tangent to each other.

Proof. Invert the whole diagram at center A with arbitrary radius, the images
of points and circle are denoted by primes. Since A lies on ω, ω′ is a line,
passes through B′ and K ′. Notice that C ′ and D′ lie on the different sides of
ω′. Since the circumcircles of triangles 4ACK and 4BDK are tangent to
each other, we have C ′K ′ is tangent to the circumcircle of triangle 4B′D′K ′.
It means ∠C ′K ′B′ = ∠B′D′K ′. Let X and Y be two arbitrary points, lie on
ω′ and the different sides of B′.

B′ K ′

C ′

D′

Y X

ω′

−→
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First assume thatK ′ ≡ B′ so ∠C ′B′Y = ∠C ′K ′B′ > 0 = ∠K ′D′B′ and when
K ′ moves along the ray

−−→
B′X, ∠C ′K ′B′ decreases and ∠K ′D′B′ increases. It

yields there is exactly one point K ′ on the ray
−−→
B′X so that ∠C ′K ′B′ =

∠B′D′K ′. In the same way we get there is only one possible case for K ′ on

the ray
−−→
B′Y and the result follows.

ΓΓ
AA

BB CC

XX

MM NN

JJ

HH

PP
LL

DD

A′A′

EE

ΩΩ

Denote ω1 and ω2 by the circumcircles of triangles 4AJP and 4HND. Let
H be the indirect homothety that sends ω1 to ω2. Notice that J and N lie
on the different sides of AH. Now since the arc AP of ω1 is equal to the arc
HD of ω2 and AP ‖ HD, H sends A to D and P to H therefore (A,H) and
(P,D) are anti-homologous pairs. Let L be the anti-homologous point of J
under H. It’s well-known that the pairs of anti-homologous points lie on a
circle so ALHJ and LPJD are cyclic quadrilaterals.

Let E be the reflection of A over the point M . We claim that HDEN is
cyclic. A′ lies on Γ so that AA′ ‖ BC. We know that (A′X,BC) = −1 hence
NA′ is tangent to Γ. Also by symmetry NE is tangent to the circumcircle
of triangle 4CEB. Now since HE is the diameter of this circle, we have
∠NEH = 90◦ = ∠NDH and our claim is proved. The line AM meets the
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circumcircle of triangle 4PDM again at L′. We have

AL′ ·AM = AP ·AD =⇒ AL′ ·AE = AH ·AD

it follows that L′HDEN is cyclic so L′ ≡ L. We have

∠PJH = ∠AJH − ∠AJP = ∠HLM − ∠HND
= ∠HLM − ∠HLD = ∠DLM = ∠DJM

therefore ∠HJD = 90◦. From this we can conclude that the cirucmcircles
of triangles 4DHJ and 4DMN are tangent to each other and the common
external tangents of them are concurrent at H since the tangent line to the
circumcircle of triangle 4DHJ through H is parallel to DMN . So, the
problem is proved for K ≡ D, now suppose that K 6= D. Since ∠AHL =
∠LNM the circumcircles of triangles4LHJ and4LMN are tangent to each
other. So, L ≡ K. DenoteO1 andO2 by the circumcenters of triangles4LHJ
and 4LMN . It’s obvious that O1, L, and O2 are collinear so ∠O1LH +
∠O2LN = 90◦. It yields

∠HO1L = 180◦ − 2∠O1LH = 2∠O2LN = 180◦ − ∠LO2N =⇒ O1H ‖ O2N

therefore the direct homothety that sends (O1) to (O2), sends H to N and
the conclusion follows. �

Solution 2. Let D be the intersection of AH and BC. Denote Ω by the
circle with diameter PM . It’s obvious that D lies on Ω.

ΓΓ

ΩΩ
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BB CC

XX

MM NN
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X ′X ′
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Let F be the intersection of NH and MJ . Since J and B lie on the same
side of PD, J lies on the arc PD (the one that does not contain M) so J and
H lie on the same side of BC. Also

∠HNM = ∠AJP < ∠JPD = ∠JMD

therefore F and J lie on the same side of NM and we have 4FMN ∼
4APJ since ∠JPD = ∠JMD. It follows that A, F , H, and J are concylic.
Let J ′ and N ′ be the reflections of J and N over the points P and M ,
respectively. Since P is the midpoint of AH, AJ ′HJ is a parallelogram. The
A−symmedian meets Γ again at X ′. Since XX ′ ‖ BC, by symmetry N ′X ′

is tangent to Γ, too. Also we know that (AX ′, BC) = −1 so N ′A is tangent
to Γ. Now 4FMN ∼ 4APJ yields 4FMN ′ ∼ 4APJ ′. It follows that

∠N ′FM = ∠J ′AP = ∠AHJ = 180◦ − ∠AFJ

hence A, F , and N ′ are collinear. Again from 4FMN ′ ∼ 4APJ ′ we get

∠PJH = ∠AJ ′P = ∠FN ′M = 90◦ − ∠PMN ′ = ∠DPM = ∠DJM

In the third equality we used that MP ⊥ AN ′ (It’s a well-known property,
If we let O be the center of Γ then APMO is a parallelogram). It yields
∠HJD = ∠PJM = 90◦. Like the first solution we know that there are at
most two possible cases for K and we can conclude that D is one of them.
Now we suppose that K 6= D. Let AM meets Ω again at L. We have

∠LAH = 90◦ − ∠LMD = ∠LJD − 90◦ = ∠LJH

therefore ALHJ is cyclic. Since MP ⊥ AN ′ and AP ⊥ MN ′, P is the
orthocenter of triangle4AN ′M and N ′P ⊥ AM . It follows that N ′, P and L
lie on a same line. Now since ∠ALP = ∠N ′LM = 90◦ and ∠APL = ∠N ′ML,
we have 4APL ∼ 4N ′ML. It yields 4LMN ∼ 4LPH. Hence,

∠MLN = ∠PLH =⇒ ∠HLN = ∠PLM = 90◦

so LNDH is cyclic and ∠AHL = ∠LNM . It follows that the circumcircles of
triangles 4LHJ and 4LMN are tangent to each other. So, L ≡ K. Denote
O1 and O2 by the circumcenters of triangles4LHJ and4LMN . It’s obvious
that O1, L, and O2 are collinear so ∠O1LH + ∠O2LN = 90◦. It yields

∠HO1L = 180◦ − 2∠O1LH = 2∠O2LN = 180◦ − ∠LO2N =⇒ O1H ‖ O2N

therefore the direct homothety that sends (O1) to (O2), sends H to N and
the conclusion follows. �



50 Advanced Level

Comment. We can also prove LHDN is cyclic by angle-chasing. We have

∠DLM = ∠DPM = 90◦ − ∠PMD = ∠PJD − 90◦ = ∠PJH

also ∠HLM = ∠AJH so ∠HLD = ∠AJP = ∠HND and it follows that
LHDN is cyclic.
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